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A general and simple method for graphical enumeration of the coefficients of the secular poly- 
nomials of the Hiickel molecular orbitals is presented with examples. The essential procedure is to 
count for the graph and its subgraphs the non-adjacent numbers, p(G, k)'s, which appear as the 
coefficients of the Z-counting polynomial Q(Y). Two composition principles are proposed and shown 
to simplify these procedures to a great extent. Application to biphenylene shows the superiority of 
this method to others, e.g., the method of polygons. 

Eine einfache und aUgemeine Methode zur graphischen Bestimmung der Koeffizienten des 
S~ikularpolynoms bei H/ickelproblemen wird angegeben. Das Wesentliche ftir den Graphen und 
seine Untergraphen ist es, die Nichtnachbar-Zahlen abzuz~hlen. Letztere erscheinen im Z-zghlenden 
Polynom. Zwei einfache Aufbau-Schemata werden vorgeschlagen. Am Beispiel yon Biphenylen 
werden die Vorziige diesen Verfahrens demonstriert. 

Introduction 

Since the secular determinant of the Hiickel molecular orbitals for unsaturated 
hydrocarbons reflects only the neighbourship of the carbon atoms in molecules, 
it is closely related to what is called in the graph theory [1] an adjacency matrix 
but was named by I t a m  [2] a topological matrix [3, 4]. In this topological sense 
distinction between saturation and unsaturation in the C - C  bonds is meaningless. 
There often arises a need for expanding the secular determinant into a polynomial 
P(X), which is called a characteristic or secular polynomial. The method for 
deriving P(X) from those of component  subgraphs has been established [5, 6]. 

On the other hand "the method of polygons" has been proposed to count 
the coefficients in P(X) graphically but with no generalised algorithm [7-10]. 
Very recently, however, it was shown that P(X) for a tree graph, or a chain hydro- 
carbon, can be simply expressed by using the p(G, k) numbers as, 

Pa(X) = ~. ( -  1) k p(a, k) X N-2k , (1) 
k=O 

where p(G, k) is the number of ways in which disjoint k bonds are chosen from 
graph G. This paper gives a generalised method for graphical enumeration of P(X) 
of a given graph with or without rings. 
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Definitions 

The followings are the necessary definitions for describing the enumeration 
method. 

1) A graph G consists of points (vertices or atoms) and lines (edges or bonds) 
[1]. We are concerned with such connected non-directed graphs that have no 
loop (a line joining a point to itself) and no multiple lines (double or triple bonds). 

2) An adjacency matrix A for graph G with N points is a square matrix of the 
order N with elements, 

{~ if the points i and j are neighbours, 
aiJ = otherwise. (2) 

The matrix character is independent of the way of numbering the points. 
3) A characteristic polynomial or a secular polynomial P(X) is defined as 

N 

P ( X )  = det IXE + AI -- ~ CiX N-' (3) 
i=O 

where E is a unit matrix of the same oder N as that of A, X is a scalar variable and 
C i is the coefficient which we are going to obtain. 

4) A non-adjacent number p(G, k) is the number of ways in which disjoint k 
bonds are chosen from G; p(G, 0) being unity and p(G, 1) the number of lines. 

5) A Z-counting polynomial Q(Y) for G is defined as 

Qa(Y) = ~ p(G, k) yk (4) 
k=0 

where m is the maximum number of k for G. Both for a single point and a vacant 
graph let us define Q(Y)= 1. The integer p(G, m) is the number of the Kekul6 
structures for an unsaturated hydrocarbon with the carbon skeleton G [11]. 

6. A topological index Z for G is defined as 

Za = ~ p(G, k) = Qa(1). (5) 
k=O 

Interesting properties of the quantities, p(G, k), Q(Y) and Z are discussed 
elsewhere [4]. 

Theorems 

Fundamental Equation 

The fundamental equation for the graphical enumeration of P(X) from G 
is as follows: 

Pa(X) = ~ ( -  1) k p(G, k) X N-2k 
k=O 

G ml 

- 2 Z Z ( - 1) k § n, p(G - Ri,  k) X N -  ' ' -  2 .  (6) 
i k=O 

G m~j 

+22 Z Z (-1)k+"~+"JP(G-R,-R~,k) xN-"'-"J-2k 
i > j k = O  
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G - Ri: A subgraph of G derived by deleting a ring R~ and all the lines incident 
to Ri. It  may or may not be a disjoint graph. 

G - Ri - Rj: A subgraph of t3 derived by deleting a pair of disjoint rings Ri 
and R~ and all the lines incident to Ri and/or Rj. 

n~: The number  of points in R~. 
m~: The maximum number  of k for G - R,. 
m~j: The maximum number  of k for G - R~ - R~. 
a 
~ :  Summation over all the possible rings in 13. 

i 
G 

: Summation over all the possible pairs of two disjoint rings in 13. 
i>j  

If  necessary, one can continue to write the right-hand side of Eq. (6) as far as he 
wishes. Note that the second term can be expressed as 

G 

with G~ = G - Ri and Ni = N - ni and that the term in the brackets has quite the 
same form as the first term of Eq. (6). This is also the case for the remaining terms. 

Now the problem is reduced to obtaining the p(a, k) numbers for a given graph. 
It is easy to count the p(G, k) numbers and therefore to write out P(X) for graphs 
with smaller N or those of special classes as will be shown later. On the other hand, 
for most  larger graphs the procedure for counting the p(G,k) numbers is as 
formidable as that for expanding the determinant by minors. 

By the aid of the Z-counting polynomial  Q(Y), the p(G, k) numbers can be 
obtained rather mechanically. The following two Composit ion Principles are 
useful for this purpose. 

Composition Principle I 

Consider a graph G and choose from it a line l as exemplified in Fig. 1.1) Delete 
line l and we get subgraphs L and M. 2) Delete all the lines in L and M that were 
incident to l and we get subgraphs A, B . . . .  F. The Z-counting polynomial Qa 

STEP I STEP 2 

�9 

| 174  

�9174 

Fig. 1. Illustration for Composition Principle I. In this example no such lines are deleted that are 
constituents of a ring. See also Fig. 5 for the case where rings are opened by deletion of a line or a 

group of lines 
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for G can be expressed as 

Qa = QLQ~ + Y" QaQnQcQoQnQF, 

or more generally as 

(7) 

t l + {a} 

Qa = I-I QL + Y" [ I  QA. (8) 

Multiplication 1 runs over all the subgraphs L's obtained by deleting bond l, 
while l + {a} means deletion of I and all the bonds a's incident to I. The p(G, k) 
numbers appear as the coefficients of the term yk in Qa(Y). If one deletes a line 
which is a constituent of a ring, a single subgraph L, instead of L and M, is obtained 
in step 1). In this case the first term of Eq. (8) is no longer a product but a single 
polynomial QL- This principle also applies to step 2) and Composition Principle II. 
Thus all the polynomials Q's following a product sign should be mutually disjoint. 

By putting Y -- 1 into Eqs. (7) and (8) we get the expressions for the topological 
index Z. 

Z a = Z r Z  M + Z A Z n Z c Z D Z ~ Z  ~ (9) 
and 

l /+{a} 
H zr + H (lO) 

The proof is given in Appendix of Ref. [-4]. 

Composition Principle I I  

Consider a graph G and choose from it a point p as exemplified in Fig. 2. 
The number of the lines incident to point p should be at least two, e.g., six as in this 
example. 1) Divide them into two groups. 2) Delete a group of lines a, b and c in G, 
and we get subgraphs A, B, C and M. 2) Delete another group of lines d, e and f 
in G, and we get subgraphs D, E, F and L. 4) Delete both the groups of lines 
a, b . . . .  f in G, and we get subgraphs A, B, ... F. With these subgraphs we have 

Qa = QaQnQcQ~ + QaQEQeQL - QaQnQcQaQr.Qr 1 (11) 

or more generally 
{p} {p-} {p + ~} 

Qa = [ [  Qr + l-[ Qt  - 1-I Qa. (12) 

S T E P  2 STEP 3 STEP 4 

o 
i? :il | �9 .| 

Fig. 2. Illustration for Composition Principle II. See also Fig. 3 

1 Eq. (11) may be expressed as 

Q~ = QL Q, - (QAQ~Qc - QO (Q,QEQ~ - P~) (11') 
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Multiplication {p} runs over all the subgraphs Us obtained by deleting a group 
of lines incident to point p. The symbol {~} means deletion of the coset of {p}. 
The corresponding expressions for the topological index are 

Z G = J ~ 4 Z B Z c Z  M -t- Z D Z E Z F Z  L --  Z A Z B Z c Z D Z E Z F  2 (13) 
(p} {,~} {p + p} 

ZG = ]~I ZL + 1-I Zr -- 1-[ Z . .  (14) 

Examples 
Tree Graphs 

For tree graphs Eq. (6) turns out to be Eq. (1) since a tree has no ring. 
1) Linear Graphs (normal paraffins). The carbon atom skeletons of n-paraffins 

form the most simplest series of graphs. If a linear graph with N points is denoted 
as 2V, the p(G, k) numbers for N are given by 

p(_N, k) = N-kCk = (N -- k)(N - k - 1)... (N - 2k + 1)/k! (15) 

and we have 

and 

G] 
g~(y)= ~ N_kC k yk (16) 

k=O 

G-] 
( -  1) k N_kCkX u-  zk . 

k=O 
Ps(X) = (17) 

Trees (branched paraffins). Many examples for the application of Composi- 2) 
tion Principle I to tree graphs are given elsewhere [4, 12]. Therefore let us apply 
Compositon Principle II to a multi-branched tree graph, or 3,3-diethylpentane, 
in Fig. 3. By noticing the central point one can obtain the Z-counting polynomial 
Q as 

Q(Y) = 2(1 + 4 Y + 3 y2)(1 + y ) 2  (1 + y)4 

= 1 + 8 Y +  18Y z+  16Y 3 + 5 Y  4 

by decomposing the graph G into subgraphs as shown in Fig. 3 and by using 
Eq. (6). The p(G, k) numbers appear as the coefficients of Q(Y) and we get 

P ( X ) = X  9 - 8 X  7 + 18X 5 -  16X 3 + 5 X  

and Z = 48. The topological index Z is useful for checking the calculation of the 
polynomials Q and P. 

I ' \ v I ]  \ I r\\.../1 \ i 

Q[./ \J :Q [/::::(\] {/:::'::::\] , , ,  

: . . . .  { o r - i ;  
Fig. 3. Example of the application of Composition Principle II 

z Eq. (13) may be expressed as 
Za = ZLZM - -  (Z AZnZc - ZL) (Z, ZEZr - Zu) (13') 
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Non-Tree Graphs 

1) Ring Graphs (cyclo-paraffins). The p(G, k) numbers for an N-membered 
ring (denoted as N O ) are given by 

p(N ~ k) = Iv_kCk N / ( N  - -  k) 

= k -  1 (18) 

N ( N - k - 1 ) ( N - k - 2 ) . . . ( N - 2 k + l ) / k !  k > l  

and we have 

QNo(Y) = 
k=O 

{N_kCkN/(N-- k)} yk. (19) 

Since in this case the ring R 1 is identical to G (namely n 1 = N), the second term of 
Eq. (6) becomes - 2 ( - 1 )  N. Thus we have 

PNo(X) = ~ ( -  1) k p(N ~ k) X N-zk - 2 ( -  1) N . (20) 
k=0 

The resultant polynomials for smaller rings are well known and not shown here 
[4-6, 13]. 

2) Multi-Ring Graphs. Consider a graph G in Fig. 4, or the carbon atom 
skeleton of biphenylene. See also Table 1 for explanation. The first step is to set 
up all the possible subgraphs Gi's (i = 1 -  6 in this example and marked with 
heavy lines, G 6 being a vacant graph) with Ni points by deleting from G a ring Rz 
(framed) and the lines (crossed) incident to it. Next try to find out the possibility 
if a pair of disjoint rings can be chosen from G. In this example we get a vacant 
graph G 7 by deleting two disjoint hexagons and two lines joining them. Continue 
this process until as many disjoint rings are chosen from G as possible. Write 
out the set of the polynomials QG,(Y)'s together with that of the original graph 

G=Go 

Fig. 4. Subgraphs for enumerating the characteristic polynomial of biphenylene. See also Table 1 for 
explanation 
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Table 1. Components  of the characteristic polynomial PG(X) of biphenylene" 
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i b l~ Ni a Y-Expression, Qa,(Y ) Ref. X-Expression * Weighr 

0 0 12 l + 1 4 Y + 7 1 Y 2 + 1 6 2 Y  3 /Fig.  5 ~ X 1 2 - 1 4 X l ~  6 1 
+164Y~- t -60Ys+5Y  6 [ Eqs. (16) (19)J + 1 6 4 X 4 -  60X2 + 5 

1 1 8 ( l + 3 y + y 2 )  2 Eq.(16) X 8 - 6 X 6 + l l X 4 - 6 X 2 + l  - 2  
= l + 6 Y + l l y 2 + 6 y 3 +  y 4 

2,3 1 6 2 ( l + 6 Y + 9 Y 2 + 2 Y  3) Eq.(19) 2 ( X 6 - 6 x 4 + g x 2 - 2 )  - 2  
4,5 1 4 2 ( l + 3 Y + Y  2) Eq.(16) 2 ( X 4 - 3 X 2 + 1 )  - 2  
6 1 0 1 Def. 5) 1 - 2  
7 2 0 1 Def. 5) 1 4 

a The characteristic polynomial Pa(X) for biphenylene is 
with weights given in the last column. 

b The suffix referring to the subgraph given in Fig. 4. 
c The number  of disjoint rings deleted from G to give G i. 
a The number  of points in Gi. 
~ The polynomial begins with ( -  1 )~ ( -X)  N~. 
f ( _  2)I,. 

obtained by adding the X-expressions 

~176 + v o [ C _ 9 ]  

~ [C<)]  = (o [�9 ,(~ 
Fig. 5. Illustration for obtaining Qa(Y) of the carbon atom skeleton of biphenylene. By the use of 

Eqs. (16) and (19) the polynomial Qa(Y) is obtained as in Table 1 

G( -= o) as in Table  1. The  m e t h o d  for ob ta in ing  Qa(Y) is i l lus t ra ted  in Fig. 5. N o w  
transfer  each Y-expression into  such an X-express ion  tha t  begins with the t e rm 
( - 1 )  N ( - X )  N~, descends  in its power  by  two, a l te rna tes  in the sign and  has the 
same set of  the coefficients p(G, k)'s. F ina l ly  add  up all the X-express ions  with 
weights ( - 2 )  h to get Pa(X), where  l i is the  n u m b e r  of  the d is jo int  r ings dele ted  
f rom G to give Gi. In  this example  we get 

P(X) = X j2 - 14X a~ + 71X 8 - 162X 6 + 164X 4 - 60X 2 + 5 

- 2 ( X  8 - 4 X  6 q- X r q- 6 X  2) q- 4 

= X ~2 - 14X 1~ + 69X 8 - 154X 6 + 162X 4 - 72X 2 + 9.  

C o m p a r e  the present  m e t h o d  with the  " m e t h o d  of  po lygons"  for the same example  
[8, 9] and  find out  the s impl ic i ty  and  genera l i ty  of the former.  

Acknowledgement. The author thanks Miss Keiko Kawasaki for programming and numerical 
checking of this material. 
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